This block provides a no-code interface for summarizing data (see dplyr::summarize()).
Instead of writing expressions, users select summary functions from dropdowns
(mean, median, sum, etc.), choose columns to summarize, and specify new column names.
Arguments
- summaries
Named list where each element is a list with 'func' and 'col' elements. For example: list(avg_mpg = list(func = "mean", col = "mpg"))
- by
Columns to define grouping
- ...
Additional arguments forwarded to
blockr.core::new_block()
Details
For expression-based summarization, see new_summarize_expr_block().
Extending available functions
The list of available summary functions can be extended using the
blockr.dplyr.summary_functions option. Set this option to a named
character vector where names are display labels and values are function calls:
options(
blockr.dplyr.summary_functions = c(
"extract parentheses (paren_num)" = "blockr.topline::paren_num"
)
)If a description is not provided (empty name), the function name will be used as the display label.
Examples
# Create a summarize block
new_summarize_block()
#> <summarize_block<transform_block<block>>>
#> Name: "Summarize"
#> Data inputs: "data"
#> Initial block state:
#> $ summaries:List of 1
#> ..$ count:List of 2
#> .. ..$ func: chr "dplyr::n"
#> .. ..$ col : chr ""
#> $ by : chr(0)
#> Constructor: blockr.dplyr::new_summarize_block()
if (interactive()) {
# Basic usage with mtcars dataset
library(blockr.core)
serve(new_summarize_block(), data = list(data = mtcars))
# With predefined summaries
serve(
new_summarize_block(
summaries = list(
avg_mpg = list(func = "mean", col = "mpg"),
max_hp = list(func = "max", col = "hp")
)
),
data = list(data = mtcars)
)
# With grouping
serve(
new_summarize_block(
summaries = list(avg_mpg = list(func = "mean", col = "mpg")),
by = "cyl"
),
data = list(data = mtcars)
)
}